The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli

نویسندگان

  • Makoto Tominaga
  • Michael J Caterina
  • Annika B Malmberg
  • Tobias A Rosen
  • Heather Gilbert
  • Kate Skinner
  • Brigitte E Raumann
  • Allan I Basbaum
  • David Julius
چکیده

Capsaicin, the main pungent ingredient in "hot" chili peppers, elicits buming pain by activating specific (vanilloid) receptors on sensory nerve endings. The cloned vanilloid receptor (VR1) is a cation channel that is also activated by noxious heat. Here, analysis of heat-evoked single channel currents in excised membrane patches suggests that heat gates VR1 directly. We also show that protons decrease the temperature threshold for VR1 activation such that even moderately acidic conditions (pH < or = 5.9) activate VR1 at room temperature. VR1 can therefore be viewed as a molecular integrator of chemical and physical stimuli that elicit pain. Immunocytochemical analysis indicates that the receptor is located in a neurochemically heterogeneous population of small diameter primary afferent fibers. A role for VR1 in injury-induced hypersensitivity at the level of the sensory neuron is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanilloid (capsaicin) receptors in health and disease.

The cloned vanilloid (capsaicin) receptor subtype 1 (VR1) integrates multiple noxious stimuli on peripheral terminals of primary sensory neurons. The initial excitation of these neurons is followed by a lasting refractory state, traditionally termed desensitization, that has clear therapeutic potential. Capsaicin is used to relieve neuropathic pain, uremic pruritus, and bladder overactivity. Th...

متن کامل

Capsaicin activation of the pain receptor, VR1: multiple open states from both partial and full binding.

Capsaicin, the pungent ingredient of hot peppers, has long been used to identify nociceptors. Its molecular target, the vanilloid receptor VR1, was recently cloned and confirmed functionally as a polymodal detector of multiple pain stimuli: heat, acid, and vanilloids. Previous electrophysiology studies have focused on whole-cell characteristics of the receptor. Here, we provide the first in-dep...

متن کامل

Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification.

The capsaicin receptor TRPV1, one of the major transduction channels in the pain pathway, integrates information from extracellular milieu to control excitability of primary nociceptive neurons. Sensitization of TRPV1 heightens pain sensation to moderately noxious or even innocuous stimuli. We report here that oxidative stress markedly sensitizes TRPV1 in multiple species' orthologs. The sensit...

متن کامل

Low pH Potentiates Both Capsaicin Binding and Channel Gating of VR1 Receptors

Capsaicin ion channels are highly expressed in peripheral nervous terminals and involved in pain and thermal sensations. One characteristic of the cloned VR1 receptor is its multimodal responses to various types of noxious stimuli. The channel is independently activated by capsaicin and related vanilloids at submicromolar range, by heat above 40 degrees C, and by protons at pH below 6.5. Furthe...

متن کامل

Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain.

Cancer colonization of bone leads to the activation of osteoclasts, thereby producing local tissue acidosis and bone resorption. This process may contribute to the generation of both ongoing and movement-evoked pain, resulting from the activation of sensory neurons that detect noxious stimuli (nociceptors). The capsaicin receptor TRPV1 (transient receptor potential vanilloid subtype 1) is a cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1998